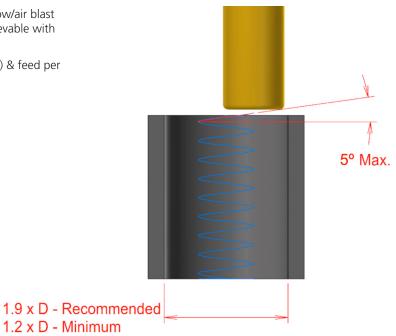


XV5CB Series Recommended Cutting Data - Profile Milling at 3xD ADOC (ap) - Inch

	I 5 0	Hardness	Preferred		RWOC (ae)		End Mill Diameter (inch)						
Workpiece Material Group			o Possible x Not Possible				3/8	1/2	5/8	3/4			
			Emulsion	Compressed air	SMM	5%	10%	15%	Multiply fz by this Factor based on ae. When finishing, use the standard fz per chart		per chart		
						2.3	1.67	1.4	below. Only add chip thinning when roughing or semi-finishing.				
						Vc - SFM			fz - in/tooth				
Low Carbon Steels 12L14, 1018, A36		≤ 28 HRC	0	•	o	1150	985	820	.0023	.0030	.0038	.0045	
Medium Carbon Steels 1045, 1050, 1070	Р	≤ 38 HRC	0	•	o	850	785	720	.0023	.0030	.0038	.0045	
Alloy Steels 4130, 4140, 4340		S DO HILC	0	•	o	785	720	655	.0023	.0030	.0038	.0045	
Die / Tool Steels A2, D2, H13, P20		≤ 45 HRC	0	•	o	720	655	590	.0023	.0030	.0038	.0045	
Stainless Steels - Free Machining 303, 400 Series		≤ 28 HRC	•	•	0	675	590	500	.0023	.0030	.0038	.0045	
Stainless Steels - Austenitic 304, 316	M	м	S ZO HIL	•	x	0	525	460	330	.0018	.0024	.0030	.0036
Stainless Steels - Difficult to Machine 13-8PH, Nitronics		≤ 45 HRC	•	x	o	360	295	230	.0015	.0020	.0025	.0030	
Stainless Steels - Precipitation Hardened 15-5 PH, 17-4 PH, 17-7 PH			•	•	0	525	460	330	.0018	.0024	.0030	.0036	
Titanium Alloys 6Al-4V	S	≤ 42 HRC	•	x	x	400	330	265	.0015	.0020	.0025	.0030	

Notes

- Cutting data provided should be considered advisory only. Adjustments may be necessary depending on the application, workpiece rigidity, machine tool, etc.
- The XV5CB should only be used in accurate tool holders with high gripping power. ER collet type holders are not recommended.
- For optimal performance in ISO S materials, ae = \leq 0.1 x D



XV5CB Series Recommended Cutting Data - Profile Milling at 3xD ADOC (ap) - Inch

Helical interpolation recommendations

- Under optimal conditions, with proper coolant flow/air blast techniques, up to 5° helical ramp angles are achievable with the XV5CB in most materials
- A reduction of 30-50% in both cutting speed (Vc) & feed per tooth (fz) are recommended
- Recommended hole diameter = 1.9 x D
- Minimum hole diameter = $1.2 \times D$

1.2 x D - Minimum

	Compensation Factor
5%	2.30
7%	1.96
8%	1.84
10%	1.67
13%	1.49
15%	1.40

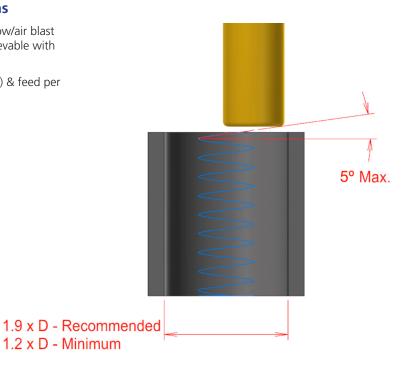
During profile milling with a radial width of less than 50% of the cutter diameter, the actual chip thickness at the cutting edge is less than the programmed chipload. The accompanying table shows the increase in chipload by given radial width percentage to adjust for chip thinning. Multiply your recommended chip thickness by the appropriate feed factor to establish the correct feed rate.

XV5CB Series Recommended Cutting Data - Profile Milling at 4xD ADOC (ap) - Inch

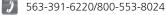
	I 5 0	Hardness	Preferred		RWOC		End Mill Diameter (inch)					
Workpiece Material Group			o Possible x Not Possible			(ae)		3/8	1/2	5/8	3/4	
			Emulsion	Compressed air	SMIM	5%	10%	Multiply fz by this Factor based on ae. When finishing, use the standard fz per chart				
						2.3	1.67	below. Only add chip thinning when roughing or semi-finishing.				
						Vc - SFM		fz - in/tooth				
Low Carbon Steels 12L14, 1018, A36		≤ 28 HRC	0	•	o	985	820	.0015	.0020	.0025	.0030	
Medium Carbon Steels 1045, 1050, 1070	Р		0	•	o	785	720	.0015	.0020	.0025	.0030	
Alloy Steels 4130, 4140, 4340		≤ 38 HRC	0	•	0	720	655	.0015	.0020	.0025	.0030	
Die / Tool Steels A2, D2, H13, P20		≤ 45 HRC	0	•	o	655	590	.0015	.0020	.0025	.0030	
Stainless Steels - Free Machining 303, 400 Series		20 10 0	•	•	o	590	500	.0015	.0020	.0025	.0030	
Stainless Steels - Austenitic 304, 316	M	≤ 28 HRC	•	x	0	525	460	.0011	.0014	.0018	.0021	
Stainless Steels - Difficult to Machine 13-8PH, Nitronics		≤ 45 HRC	•	x	0	295	230	.0009	.0012	.0015	.0018	
Stainless Steels - Precipitation Hardened 15-5 PH, 17-4 PH, 17-7 PH			•	•	0	525	460	.0011	.0014	.0018	.0021	
Titanium Alloys 6Al-4V	s	≤ 42 HRC	•	x	x	330	265	.0009	.0012	.0015	.0018	

Notes

- Cutting data provided should be considered advisory only. Adjustments may be necessary depending on the application, workpiece rigidity, machine tool, etc.
- The XV5CB should only be used in accurate tool holders with high gripping power. ER collet type holders are not recommended.
- For optimal performance in ISO S materials, ae = \leq 0.07 x D



XV5CB Series Recommended Cutting Data - Profile Milling at 4xD ADOC (ap) - Inch


Helical interpolation recommendations

- Under optimal conditions, with proper coolant flow/air blast techniques, up to 5° helical ramp angles are achievable with the XV5CB in most materials
- A reduction of 30-50% in both cutting speed (Vc) & feed per tooth (fz) are recommended
- Recommended hole diameter = 1.9 x D
- Minimum hole diameter = $1.2 \times D$

RWOC (ae)	Chip Thicknesss Compensation Factor
5%	2.30
7%	1.96
8%	1.84
10%	1.67

During profile milling with a radial width of less than 50% of the cutter diameter, the actual chip thickness at the cutting edge is less than the programmed chipload. The accompanying table shows the increase in chipload by given radial width percentage to adjust for chip thinning. Multiply your recommended chip thickness by the appropriate feed factor to establish the correct feed rate.

